If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-8-2c=0
a = 1; b = -2; c = -8;
Δ = b2-4ac
Δ = -22-4·1·(-8)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-6}{2*1}=\frac{-4}{2} =-2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+6}{2*1}=\frac{8}{2} =4 $
| 2(x+9)+x=5(x+2 | | 3y-9=21 | | -5(x+6)=3(x+13)-5 | | 5x+4-73=-14 | | 5x-17-4=-7 | | 10x–6=3x+8 | | 2.3y-9=21 | | 3.9+10m=6.18 | | -6x-3=3+4x | | 13=u/2+19 | | (3+3)x=129 | | 10g+7=1-9g | | 10x+3(x+8)-1=11 | | 35x+105=105 | | 1/2(6w-4)=-5w+1 | | 3t—7=11+t | | 7x+19+3x+11=180 | | 1/3^2=a | | 6-3v=-3(7v-8) | | 12-8=38-4x+2 | | 3(3x-11)=48 | | (x+6.3)/(1.40-0.71)=8.3 | | 8+9y-3=5y+33-3y | | 9w-1=-53 | | 4z+14=3z+6 | | 1/3=a^2 | | –5x–6=34 | | 3.7+10m=6.36 | | 40=2(6x+8) | | 2(r-3)=10r-6-8r | | x−18=10 | | -7x+5=-5x+1 |